Application of Ozone Nanobubble Water (ONBW) to Peri-Implantitis Treatment

Article - January 2017
DOI: 10.4172/2161-1122.1000466

3 authors, including:

Shinichi Arakawa
Tokyo Medical and Dental University
36 PUBLICATIONS 580 CITATIONS

Anongwee Leewananthawet
Tokyo Medical and Dental University
2 PUBLICATIONS 1 CITATION

Some of the authors of this publication are also working on these related projects:

Isolation and identification of a cytopathic activity in Tannerella forsythia View project
Application of Ozone Nanobubble Water (ONBW) to Peri-Implantitis Treatment

Shinichi Arakawa1*, Mitsuru Sugisawa2 and Anongwee Leewanathawet1,3
1Graduate School, Department of Lifetime Oral Health Care Science, Tokyo Medical and Dental University, Japan
2Sugisawa Dental Clinic, Japan
3Graduate School, Department of Periodontology, Tokyo Medical and Dental University, Japan

Corresponding author: Shinichi Arakawa, Professor, Graduate School, Department of Lifetime Oral Health Care Science, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, Japan, 113-8510, Tel: +81-3-5803-4968; Fax: +81-3-5803-0239; E-mail: shinperi@tmd.ac.jp

Received date: October 24, 2017; Accepted date: November 27, 2017; Published date: December 04, 2017

Copyright: © 2017 Arakawa S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

In this case report, we investigated the effects of Ozone nanobubble water (ONBW) on peri-implantitis lesions with non-surgical treatment. ONBW preserves the ozone gas nucleus for more than 6 months although half life time of ozone water was almost 30 minutes. ONBW exerts anti-microbial activity towards several kinds of bacteria including periodontopathic bacteria and cariogenic bacteria. There was no cytotoxicity against oral epithelial and mucosa cells. The Advanced quick bonding (AQB) implants on 19 and 20 were placed on a patient 43 years old female four years ago. The chief complaint of her was swelling at the site of 20. The patient presented swollen at peri-implant area, Bleeding of probing (BOP), and probing depth (PD)=6 mm at buccal site of an implant of 20. There was no findings of mobility at concerned implant. The bone resorption and a radiolucent part around the implant was confirmed with periapical radiograph. The amount of bone loss was 5.0 and 6.5mm at mesial and distal site of 20, respectively. This peri-implantitis was evaluated the case required surgical therapy. In addition to mechanical plaque control, the patient received regular professional oral hygiene treatment and irrigation with ONBW every week at 100ML each. And also, regarding chemical plaque control, the irritation for pockets was also performed at home by the patient at a frequency of three times a day every day. After 12 weeks, soft tissues of the peri-implant presented no clinical signs of inflammation and BOP, and PD was 3 mm. The bone levels did not change significantly as demonstrated by the follow-up roentgenography taken after 3 years. Microbiologically, the number of red-complex of periodontopathic bacteria have been decreased substantially. This case report supports that ONBW might be effective and predictable as an adjunctive therapy for peri-implantitis. To the best our knowledge, this is the first report on describing the peri-implantitis treatment with ONBW.

Keywords: Ozone nanobubble water (ONBW); Peri-implantitis; Bactericidal activity

Abbreviations

ONBW: Ozone nanobubble water

Introduction

Peri-implant diseases were classified in two types such as peri-implant mucositis and peri-implantitis. The peri-implant mucositis is a reversible inflammatory disease localized at the mucosa. On the other hand, peri-implantitis is characterized by an inflammatory status around an implant, which included both inflammation at soft tissue and progressive bone resorption circumferentially around an osseointegrated dental implant [1]. There are some studies describing the prevalence of peri-implantitis. In a review, the prevalence of peri-implantitis varied from 15% to 56% at the patient level [2]. In another study with samples of 245 patients from a private practice, the prevalence of peri-implantitis varied from 12% to 22% [3].

These inflammation and infection at peri-implant supportive tissues were associated with biofilm composed with pathogenic microorganisms [4] which mediated inflammatory soft tissue response at soft tissue and bone at peri-implant area [2]. Rosenberg et al. reported that peri-implantitis lesions have similar microbiota to those of chronic periodontitis [5]. Gloria IL, et al. reported in their systemic review that healthy implants and peri-implantitis are colonized by periodontopathic microorganisms. Porphyromonas gingivalis and especially Prevotella intermedia/nigrescens may be more frequent in diseased implants. Moreover, peri-implantitis is characterized by the colonization of non-cultivable asaccharolytic anaerobic gram-positive and gram-negative rods [6].

For treatment of peri-implantitis, several therapies have been reported [7-9]. Non-surgical treatments usually include debridement with curettes or air abrasion, and these can be with antibiotic therapy [10,11]. For the latter, chlorhexidine rinses or deposits or erbium:ytrrium-aluminum-garnet (Er: YAG) laser application has been used. Surgical treatments involve access to lesion followed by debridement, in some cases, regenerative therapy such as bone grafts or barrier membranes [12]. Since there were few long-term prospective randomized studies, ideal peri-implantitis therapies have not be elucidated. However, the cumulative interceptive supportive therapy (CIST) protocol serves as the guideline for the treatment of the peri-implantitis [4,13].

Ozone has been accepted as a treatment modality in many countries as ozone therapy. Ozone is composed of a three-atom molecule consisting of three oxygen atoms. Ozone has been utilized in both an aqueous and gaseous form in medicine and dentistry [14]. Ozone therapy provides antimicrobial, anti-inflammatory, and wound healing effects [15-17]. Additionally, it has been reported that ozone therapy...
also has several kinds of desired effects, such as immune-stimulating, anti-hypoxic, analgesic, detoxicating and biosynthetic ones [18]. It was used in several empirical studies as a therapeutic agent for chronic wounds (like trophic and ischemic ulcers and diabetic wounds, etc.) [19]. The use of ozone was also examined in viral-fungal and bacterial infections, ocular, ischemic, orthopedic, hematological, neurodegenerative, pulmonary, renal and dermatological diseases; and in age-dependent macular degeneration [20]. In dentistry, it has also been used in the gaseous or aqueous form to inhibit bacterial proliferation, obtain epithelial wound-healing, enhance local oxygen supply, eliminate cariogenic bacteria, disinfect the root canals, and promote hemostasis [21-23]. Regarding the cytotoxicity of ozone, there were some reports described that aqueous ozone is highly biocompatible with fibroblasts, cementoblasts, and epithelial cells [24-26], suggesting that aqueous ozone would be suitable for treating oral infectious diseases such as periodontal diseases. Although a half-life of ozonated water is about only 30 min, CHIBA and TAKAHASHI [27] developed a patented procedure to produce ozone nano-bubble water (ONBW) which name has recently been changed to Ozone Ultrafine Bubble Water approved by International Organization for Standardization (ISO). The diameter of a nano-bubble is less than 100 nm, and is produced by the collapse of a micro-bubble (≤ 50 μm in diameter) in an electrolyte solution by means of a physical stimulus. ONBW keeps the oxidation ability as aqueous ozone for more than 6 months when protected from the exposure to ultraviolet rays [28]. Since ONBW is highly stabilized, it is easy and convenient to use as a disinfectant solution at both home and clinical room. Hayakumo S, et al. reported that ONBW possesses the potent bactericidal activity against periodontopathic bacteria without exhibiting toxicity to human oral tissues [29] and that irrigation with ONBW at subgingival area may be an effective antimicrobial adjunct to mechanical instrumentation in the management of periodontal infections [30]. This study reports the effect of ONBW on treating peri-implantitis.

Case Report

A 43-year old female patient with no local and systemic contraindications to oral surgery came to the dental clinic of Sugisawa Dental Clinic in 2015. This patient received implant treatment at 20 and 19 in 2011. The implants embedded were AQB implant (Advance Co., Tokyo, Japan) (4MS: 4.00 mm in diameter and 10.00 mm in length at 20 and 3MS: 3.00 mm in diameter and 10.00 mm in length at 19). The patient showed sign of swelling at peri-implant soft tissues, associated with Bleeding of probing (BOP), probing depth (PD)=6 mm at buccal site of an implant of 20 (Figures 1 and 2).

![Figure 1: Oral photograph in 2015. The patient showed sign of swelling of peri-implant soft tissues, associated with Bleeding of probing (BOP), probing depth (PD)=6mm at buccal site of an implant of 20.](image1)

![Figure 2: The patient showed swelling of peri-implant soft tissues, associated with Bleeding of probing (BOP), probing depth (PD)=6 mm at buccal site of an implant of 20.](image2)

No clinical signs of mobility were recorded. However, the defect consisted of a circumferential bone resorption and a radiolucent area delimitating the implant were confirmed by periapical radiograph. The amount of bone loss was 5.0 and 6.5 mm at mesial and distal site of 20, respectively (Figure 3). According to CIST, surgical therapy was necessary in this case [4].

![Figure 3: The amount of bone loss was 5.0 and 6.5mm at mesial and distal site of 20, respectively at 0 week. The mesial and distal levels of the peri-implant marginal bone were recovered radiographically at 12 weeks and this condition was stable following 3years.](image3)

However, in this case, we selected the mechanical plaque control using sonic a toothbrush and an interdental brush, and chemical
plaque control using ONBW (KYOCERA Corporation, Kyoto, Japan) which contains about 1.5 ppm of ozone as gas nucleus (Figure 4). The patient received regular professional oral hygiene procedures and irrigation with ONBW every week at 100 mL each by the dentist. Moreover, the irrigation for pockets was performed at home by herself at a frequency of three times a day every day.

![Figure 4: Treatment protocol in this case. The mechanical plaque control by using sonic toothbrush and interdental brush, and chemical plaque control using ONBW (KYOCERA Corporation, Kyoto, Japan).](Image)

After 12 weeks, soft tissues of the peri-implant presented no clinical signs of inflammation and BOP, and PD was 3 mm (Figures 2 and 5).

![Figure 5: Oral photograph after 12 weeks. The PD was decreased to 3mm at buccal site of an implant of 20.](Image)

Table 1: The number of red-complex of periodontopathic bacteria have been decreased substantially, Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola: 7800 to <10, 5300 to 58, and 1000 to <10, respectively.

<table>
<thead>
<tr>
<th>Species</th>
<th>0W</th>
<th>12W</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. actinomycetemcomitans</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>P. intermedia</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>P. gingivalis</td>
<td>7,800 (5.57%)</td>
<td><10</td>
</tr>
<tr>
<td>T. forsythia</td>
<td>5,300 (3.79%)</td>
<td>58 (1.31%)</td>
</tr>
<tr>
<td>T. denticola</td>
<td>1,000 (0.71%)</td>
<td><10</td>
</tr>
<tr>
<td>Total</td>
<td>1,400,000</td>
<td>4,400</td>
</tr>
</tbody>
</table>

![Citation: Shinichi Arakawa, Mitsuru Sugisawa and Anongwee Leewananthawet (2017) Application of Ozone Nanobubble Water (ONBW) to Peri-Implantitis Treatment. Dentistry 7: 466. doi:10.4172/2161-1122.1000466](Image)
ozone therapy provided to new bone formation with an autogenous bone graft in the rat calvarial defect model. Another study also described that ozone therapy was effective on bone formation in calvarial defects of rats [40].

Although ozone therapy is very effective and safe for treatment, there is one problem that a half-life time of ozonated water is about only 30 min. On the other hand, nanobubbles are maintained for more than 6 months in electrolytic solution [28]. The high stability of ONBW allows for bottling and use as a disinfectant solution at both clinical room and patient's home easily. Future studies should compare the irradiation of ozone-inactivated ONBW or other disinfectants and investigate the effects of ONBW to peri-implantitis related to the other kind of implants such as titanium or zirconium implant. In this report, topical application of ONBW for decontamination at peri-implantitis lesion has been proved to be an effective treatment option when coupled with mechanical plaque control.

Conclusion

This case report supports that ONBW might be effective and predictable as an adjunctive therapy for the treatment of peri-implantitis. As far as we know, this is the first report to describe the peri-implantitis treatment with ONBW. Future studies should compare the irradiation of ozone-inactivated ONBW or other disinfectant and investigate the effect of ONBW to peri-implantitis related to the other kind of implant such as titanium or zirconium implant.

Conflict of Interest

The authors have no conflicts of interest directly relevant to the content of this article.

References

