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Abstract 
Tumor hypoxia is an adverse factor for chemotherapy and radiotherapy. Ozone therapy is a 
non-conventional form of medicine that has been used successfully in the treatment of 
ischemic disorders. This prospective study was designed to assess the effect of ozone 
therapy on tumor oxygenation. Eighteen subjects were recruited for the study. Systemic 
ozone therapy was administered by autohemotransfusion on three alternate days over one 
week. Tumor oxygenation levels were measured using polarographic needle probes before 
and after the first and the third ozone therapy session. Overall, no statistically significant 
change was observed in the tumor oxygenation in the 18 patients. However, a significant 
decrease was observed in hypoxic values ≤10 and ≤5 mmHg of pO2. When individually 
assessed, a significant and inverse non-linear correlation was observed between increase in 
oxygenation and the initial tumor pO2 values at each measuring time-point, thus indicating 
that the more poorly-oxygenated tumors benefited most (rho = −0.725; P = 0.001). 
Additionally, the effect of ozone therapy was found to be lower in patients with higher 
hemoglobin concentrations (rho = −0.531; P < 0.034). Despite being administered over a 
very short period, ozone therapy improved oxygenation in the most hypoxic tumors. Ozone 
therapy as adjuvant in chemo-radiotherapy warrants further research. 
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Introduction 
Tumor hypoxia can cause an increase in radio-resistance by up to 2.5–3 times (1) and 
predisposes a physiologic selection of tumor cells with decreased apoptosis. This results in 
additional resistance to radiotherapy and chemotherapy (2) and further increase in 
angiogenesis and a more aggressive tumor potential (3–5). 
Tumor hypoxia, when assessed by polarographic probes, is an independent prognostic 
factor for response to treatment and/or survival of head and neck tumors (6–9) and uterine 
cervical tumors (10,11) as well as sarcomas (12,13). The polarographic probe technique 
was designated as ‘gold standard’ for tumor pO2 measurement in a special workshop 
sponsored by the National Cancer Institute (14), at which the importance of developing 
methods to overcome tumor hypoxia was emphasized. Since then, meta-analyses have 
demonstrated that hypoxia modification during radiotherapy can improve treatment 
outcomes (15). 
Ozone therapy has been shown to be beneficial to patients with ischemic disorders, 
particularly of the lower limbs (16–18). In our previous studies we had found that ozone 
therapy increases oxygenation in the most poorly-oxygenated tissues of the anterior tibialis 
muscles (19) and that oxygenation in these muscles might be related to tumor oxygenation 
(20). 
The objective of the present preliminary (and prospective) study is to evaluate the effect of 
ozone therapy on tumor oxygenation, using the polarographic probe measurement 
technique. 

 

Subjects and Methods 
Patients 
Eighteen patients with accessible metastases or advanced tumors were enrolled in the study 
(14 with head and neck tumors, 2 with gynecological tumors and two bone metastases in 
chest wall region). Patients comprised 15 males and 3 females with mean age of 64 years 
(range, 50–91). The selection criteria included the following: a minimum age of 18 years, 
Karnofsky performance status of >70%, cancer diagnosis histologically confirmed with 
metastases or advanced tumors accessible to physical examination and not being suitable 
for surgical resection. The mean of measured tumors/nodes was 6.5 cm across the greatest 
diameter (range, 3–12 cm). The exclusion criteria included the following: unwillingness to 
participate in the study, treatment with experimental or evaluation drugs during the planned 
study or not fulfilling all of the selection criteria described above. The experimental nature 
of the study was explained in detail and informed consent was obtained from all patients 
prior to study. The study was approved by the Institutional Ethical Committee. 
Ozone Therapy 
Ozone therapy was administered by autohemotransfusion on three alternate days over one 
week. The procedure involved the extraction of 200 ml venous blood into heparin (25
IU/ml) and CaCl2 (5 mM). Using clinical-grade O2, the O3/O2 gas mixture was prepared 
with an OZON 2000 device (Zotzmann + Stahl GmbH, Plüderhausen, Germany) and 
sterilized by passing it through a sterile 0.20-µm filter. The blood was mixed with 200 ml 
of the O3/O2 gas mixture at a concentration of 60 µg/ml, in a single-use sterile container 
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with a capacity of 300 ml. Following this, it was slowly re-introduced into the patient's 
body. The blood had been extra-corporeal for about 15–30 minutes but no adverse reactions 
were observed. Table 1 summarizes some of the most relevant clinical characteristics of the 
patients. 

 

Table 1 
Characteristics of the patients and their tumors 

Tumor pO2 Measurement 
Tumor oxygenation was measured using a polarographic probe system: the ‘pO2 
Histograph’ (Eppendorf AG, Hamburg, Germany). The details of this technique have been 
described previously (21). Briefly, a 0.5 mm diameter electrode (0.3 mm diameter at the tip) 
is inserted into the tumor while the patient is under subcutaneous anesthesia. The 
movement is computer controlled and consists of a 1 mm forward motion and a 0.3 mm 
backward motion to avoid tissue compression at the measurement site. A pO2 value is 
obtained at every 0.7 mm. For each set of measurements obtained, 150–200 single pO2 
values were automatically recorded using at least six different electrode tracks. To 
determine tumor oxygenation, median pO2 and the percentage of pO2 values ≤10 mmHg 
and ≤5 mmHg were obtained from the pooled data for each individual. 
Tumor oxygenation values were obtained on four occasions: First, before session #1; 
second, after session #1; third, 48 h after session #2 and before session #3; fourth, after 
session #3. 
For each tumor, the change in oxygenation (ΔpO2) was calculated as the pO2 value at each 
time-point relative to the pre-session #1 (‘baseline’) pO2 value. 
The measurements were carried out on accessible, clinically palpable lymph nodes or 
subcutaneous metastases without using an imaging technique. 
Statistical Analysis 
The SPSS 11.0 for Windows software package was used for this study. The distribution of 
data was assessed by the Kolgomorov–Smirnov test. Two-tailed tests were applied for 
significance. The paired t-test was used to compare means of all the median tumor values 
and all the percentages of the ≤10 and ≤5 mmHg measurements. These data are expressed 
as means ± SD. The Mann–Whitney U test was used to compare the ΔpO2 between tumors 
above and below the median baseline pO2. These data are expressed as median and 25%-
75% inter-quartile interval. Linear correlation was assessed by Pearson's r test and non-
linear correlation by Spearman's rho test. Differences were considered significant at the P < 
0.05 level. 
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Tumor Oxygenation 
The patient's individual data for hemoglobin levels and pO2 values at each measurement 
time-point are shown in Table 1. Initial tumor oxygenation was 23 ± 5.1 mmHg, and was 
not related to sex, age, hemoglobin levels, clinical status or tumor size. 
After session #1 tumor oxygenation was 31.9 ± 5.1 mmHg, and this difference was 
significant, P = 0.009. However, no statistically significant differences were found in the 
other two measurement time-point: 48 h after session #2 (27.3 ± 4.3 mmHg) and after 
session 3 (25.1 ± 3.9 mmHg). 
Hypoxic Values 
The percentage of values ≤10 mmHg at the baseline proceeded to decrease significantly 
during ozone therapy from 40.8 ± 7.3% to 27.4 ± 7.3% (P = 0.002) after session #1 and to 
29 ± 6.2% (P = 0.039) 48 h after session #2. The decrease to 31 ± 5.1% after session #3 did 
not qualify as statistical significance (P = 0.058). 
The percentage of values ≤5 mmHg at the baseline proceeded to decrease significantly 
during ozone therapy from 34.8 ± 7.5% to 21.7 ± 6.9% (P = 0.002) after session #1, to 23.8 
± 5.9% (P = 0.045) 48 h after session 2 and to 23.9 ± 4.9% (P = 0.033) after session #3 
(Fig. 1). 
 

 
 

Figure 1 
Change in percentage of pO2 values ≤5 mmHg. During ozone therapy, a 
decrease in percentage of pO2 values ≤5 mmHg at each measurement time-
point was observed in the tumors of patients: Baseline = before ozone 
therapy; post-1 (more ...) 

 

 
 
Figure 1 
Change in percentage of pO2 values ≤5 mmHg. During ozone therapy, a decrease in 
percentage of pO2 values ≤5 mmHg at each measurement time-point was observed in the 
tumors of patients: Baseline = before ozone therapy; post-1 = after session #1 (P = 0.002); 
48 post-2 = 48 h after session #2 (P = 0.045); post-3 = after session #3 (P = 0.033). 
Significant differences (P < 0.05) are indicated with an asterisk (*) 
Factor of Change of pO2 (ΔpO2): 
At each measurement time-point, an inverse and non-linear correlation was found between 
individual ΔpO2 and initial pO2 values. A higher ΔpO2 was observed in those tumors that 
had had lower initial pO2 values. Significant changes were observed after session #1 (rho = 
−0.812, P < 0.001), 48 h after session #2 (rho = −0.798, P < 0.001) and after session #3 
(rho = −0.725, P = 0.001) (Fig. 2). 
 Figure 2 

Factor of change in pO2 (ΔpO2) and initial pO2 For each participant, the 
ΔpO2 was calculated as the pO2 value at each time-point relative to the 
baseline pO2 value measured before the start of the ozone therapy. A non-
linear correlation (more ...) 
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Figure 2 
Factor of change in pO2 (ΔpO2) and initial pO2 For each participant, the ΔpO2 was 
calculated as the pO2 value at each time-point relative to the baseline pO2 value measured 
before the start of the ozone therapy. A non-linear correlation was found between baseline 
pO2 and ΔpO2 at each measurement time-point. The figure shows an inverse correlation 
(rho = −0.798) after session #3 of ozone therapy, which indicates that the highest therapy-
associated changes in tumor pO2 occurred in tumors with the poorest baseline oxygenation. 
A ΔpO2 value <1 signifies decrease in oxygenation and ΔpO2 >1 signifies an increase in 
tumor oxygenation after session #3. 
This was corroborated by the comparison of ΔpO2 between tumors above and below the 
median pO2 prior to ozone therapy (baseline), at each measurement time-point. While the 
initially well-oxygenated tumors (those above the median) showed oxygenation decrease, 
the initially most poorly-oxygenated tumors (those below the median) showed an increase 
in oxygenation after the ozone therapy. The changes recorded were a factor of 2.5 (range, 
2–3.1; P = 0.002) after session #1, a factor of 4.1 (range, 1.7–8; P < 0.001) 48 h after 
session #2, and a factor of 2.9 (range, 1.1–15; P = 0.002) after session #3 (Fig. 3). 
 

 
 

Figure 3 
Factor of change of pO2 (ΔpO2) segregated with respect to the initial 
median pO2. The figure shows the ΔpO2 at each measurement time-point 
following ozone therapy and segregated with respect to baseline pO2 value 
above or below the median (more ...) 

 

 
 
Figure 3 
Factor of change of pO2 (ΔpO2) segregated with respect to the initial median pO2. The 
figure shows the ΔpO2 at each measurement time-point following ozone therapy and 
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segregated with respect to baseline pO2 value above or below the median pO2 value (17
mmHg) of the overall study group. The boxes show the 25%–75% inter-quartile interval, 
which includes the 50% values. The horizontal lines in the boxes represent the median and 
the * represents the mean of ΔpO2 for both groups of tumors at each measurement time-
point. During ozone therapy, well-oxygenated tumors (baseline pO2 above the median) 
showed no change (ΔpO2 approximately 1) or even decrease after session #3 (ΔpO2 = 0.8). 
However the most ‘poorly-oxygenated’ tumors (baseline pO2 below the median) showed 
increase in tumor oxygenation (ΔpO2 >1). These differences were significant at all the 
three measurement time-points (P = 0.002, 0.001 and 0.002, respectively). < Median = 
tumors with baseline pO2 values below the median value; > Median = tumors with baseline 
pO2 values above the median value. 
Further, at each measurement time-point, an inverse, non-linear correlation between 
individual ΔpO2 and hemoglobin levels was found. The ΔpO2 in tumors was lower in 
patients with higher hemoglobin levels after session #1 (rho = −0.650, P = 0.012), 48 h 
after session #2 (rho = −0.531, P = 0.034) and after session #3 (rho = −0.579, P = 0.019) 
(Fig. 4). 
 

 
 

Figure 4 
Factor of change of pO2 (ΔpO2) after session #3 and hemoglobin levels. 
There was an inverse and non-linear correlation between hemoglobin levels 
and the ΔpO2 at each measurement time-point following ozone therapy, i.e., 
a lower effect (more ...) 

 

 
 
Figure 4 
Factor of change of pO2 (ΔpO2) after session #3 and hemoglobin levels. There was an 
inverse and non-linear correlation between hemoglobin levels and the ΔpO2 at each 
measurement time-point following ozone therapy, i.e., a lower effect of ozone therapy was 
observed in patients with higher hemoglobin levels. The figure shows the correlation with 
the ΔpO2 after session #3 (rho = −0.579, P = 0.019). 
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Ozone (O3) is the allotropic form of oxygen with three atoms and two unpaired electrons, 
which has a higher oxidizing capacity than oxygen. In order to avoid lung toxicity, medical 
applications of ozone require to preclude airways involvement. Autohemotransfusion fulfils 
this requirement. In appropriate concentrations, this technique leads to a transient oxidative 
stress that can stimulate blood antioxidants by up-regulation (22–24). This mechanism has 
been ascribed to ozone therapy's protection against free radical damage of heart (22), and 
prevention of renal (25) and hepatic (26) disorders. Hemolysis of <2.5% and an acceptable 
level of lipid peroxide formation has been described in autohemotransfusion at O3/O2 
concentrations of 60 µg/ml (23). 
The objective of the present study was to assess whether changes in tumor oxygenation 
occurred during ozone therapy. Each patient served as his own control and elective non-
ozonated autohemotransfusion was not performed in a separate control group. It was not 
considered ethical for these advanced cancer patients to undergo invasive study-
manipulations over several days in a control group which, theoretically, did not offer any 
potential benefit (transfusion of oxygenated blood is not a therapeutical approach). On the 
other hand, several studies have already demonstrated that the administration of ozone-free 
oxygen in a control group does not produce the ‘prooxidant/antioxidant’ response necessary 
to mediate the clinical effects of ozone therapy. This reaction was produced only when 
ozone was added to oxygen in equimolar amounts (18, 24 and 26). 
In the course of ozone therapy by autohemotransfusion, ozone, per se, does not enter the 
organism, and its effects are mediated by rapid (a matter of seconds) oxidation of blood 
components in the transfusion recipient. The oxidized molecules and the specific 
antioxidant generated would vary according to the levels of ozone therapy. The vascular 
effect of ozonated blood transfusion is explained by an increase of malonyldialdehyde and 
lipid peroxidation leading to leading to activation of the hexose monophosphate shunt with 
an increased production of 2,3-diphosphoglycerate in erythrocytes (27). This results in a 
displacement of the oxyhemoglobin dissociation curve to the right and an increase in the 
release of oxygen to the tissues. A pH decrease in erythrocytes may also shift the 
oxyhemoglobin dissociation curve to the right (Bohr effect) without modification of 2,3-
diphosphoglycerate (28). Furthermore, a charge modification in red cell membranes results 
in an improvement in membrane flexibility and a decrease in blood viscosity and resistance 
(18,29). Adenosine, prostaglandins and, especially, nitric oxide release could collaborate in 
affecting the micro-circulation and lead to a decrease in vascular resistance (30). 
Overall, ozone therapy decreased the percentage of values ≤10 and ≤5 mmHg at each 
measurement time-point. However, no increase was observed in tumor pO2, as has been 
reported in an animal study (31). In the present study, the oxygenation decreased in tumors 
with pO2 concentrations above the median. Based on the oxygen radio-sensitivity curve, it 
can be inferred that this is not of clinical relevance in well-oxygenated tumors. However, in 
tumors with baseline pO2 below the median, i.e. tumors in which the radio-resistance could 
increase in relation to this ‘adverse’ value, ozone therapy actually increased the tumor pO2. 
This effect is similar to that observed by us (19) in anterior tibialis muscle tissues following 
the administration of ozone therapy. 
The mechanisms underlying this effect in tumors have yet to be defined. Based on 
previously described effects, we hypothesize that the inverse correlation between initial 
oxygenation and ΔpO2 in tumors and tissues during ozone therapy is secondary to blood 
flow redistribution, i.e., a drop in blood flow in well-oxygenated tissues in favor of less 
well-oxygenated tissues. Tumor vessels have structural and functional abnormalities with 
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decreased or absent auto-regulatory mechanisms (32). Hence, an improvement in blood 
rheologic parameters, as described by other authors (18,29), could play an important role in 
the effect of ozone therapy in high-resistance systems such as in tumors; this could apply to 
at least the areas of the tumor that are most hypoxic. Congruent with this concept is the 
improvement we observed with ozone therapy in patients with lower hemoglobin levels 
and, as a consequence, with lower blood viscosity. This vascular effect is further supported 
by our preliminary studies with Doppler techniques, indicating a lasting blood flow 
increase following three alternating ozone therapy sessions (B. Clavo, personal 
communication). However, our hypothesis of an increase in tumor perfusion resulting from 
ozone therapy needs further confirmation with studies specifically addressing the effect on 
tumor blood flow using, for example, multi-channel laser Doppler. 
Techniques such as hyperbaric chambers or carbogen breathing plus nicotinamide can 
increase arterial pO2, with secondary tumor pO2 increase. Usually, however, this is less 
effective in modifying hypoxic areas and, as well, the effect is of a very short duration; of 
the order of 10–15 minutes (33). Furthermore, if applied for more than 15–30 min, these 
therapies can lead to vaso-constriction resulting in a potential blood-flow decrease, 
secondary to hyperoxia, in most organs (34) as well as in tumors (33). Our results show 
that, in the most hypoxic tumors, ozone therapy leads to an improvement in tissue pO2 for 
at least 48 h after the second session of therapy. Similarly, it should be noted that the 
hypoxic fraction was decreased for protracted periods. Nevertheless, better results could 
probably be achieved using combined therapies, principally, techniques to increase blood 
oxygenation. 
On the other hand, metastatic or large-size tumors are probably not the best situations in 
which to evaluate oxygen delivery or the vascular effect of ozone therapy, as observed in 
anemia-modification studies (35). However, for the purpose of the present study, the 
patients selected were those with advanced cancer or with large affected nodes that were 
easily accessible to physical examination so as to facilitate the tumor pO2 measurements. 
Tumor hypoxia predisposes to a physiologic selection of tumor cells with decreased 
apoptotic potential, which results in resistance to radiotherapy and chemotherapy (2), 
higher angiogenesis and a more aggressive tumor potential (3–5). If ozone therapy 
successfully decreases tumor hypoxia in some patients, it could be useful as an adjuvant in 
the treatment of these patients by improving tumor oxygenation, by reducing radio-
resistance and improving local control. Survival could be improved by decreasing tumor 
hypoxia, as shown by Overgaard's meta-analyses (15). The results of the present study 
indicate that tumor pO2 modification could support the anecdotal clinical reports of an 
improved effect of radiotherapy in advanced tumors when ozone therapy is included in the 
schedule (36). 
Radio-mimetic (37) and synergistic (38) effects of radiotherapy as well as growth inhibition 
of human cancer cells by ozone (39) and increase in chemo-sensitivity in colon carcinoma 
cells resistant to 5-fluorouracil (40) have been described; albeit, these effects of ozone are 
not directly applicable to human ozone therapy. However, from a clinical oncology point of 
view, further research needs to be conducted on the effects of ozone-enriched blood. The 
effects described in relation to increasing antioxidant (22–26) and cytokine production 
(41,42) are particularly relevant. A review on the potential role of ozone therapy as a 
biological response modifier in oncology has been published by Bocci (43), and we concur 
with the view that the appropriate controlled clinical trials would be particularly valuable. 
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In conclusion, many aspects regarding the bio-medical application of ozone therapy remain 
unexplored. In the present prospective study, the effect of ozone therapy on human tumor 
pO2 has been measured using the polarographic probe technique, and the results indicate 
that ozone therapy could increase oxygenation in the most hypoxic tumors. This suggests 
the potential use of this therapy as adjuvant in chemo-radiotherapy schedules, and would 
warrant further investigation. 
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